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In the computation of discontinuous solutions of hyperbolic conservation laws, TVD (total- 
variation-diminishing), TVB (total-variation-bounded), and the recently developed EN0 
(essentially non-oscillatory) schemes have proven to be very useful. In this paper two 
improvements are discussed: a simple TVD Runge-Kutta type time discretization, and an 
EN0 construction procedure based on fluxes rather than on cell averages. These 
improvements simplify the schemes considerably-specially for multi-dimensional problems 
with forcing terms. Preliminary numerical results are also given. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

In this paper we are interested in solving the system of hyperbolic conservation 
laws 

ut+ i fiwx,=o (or = g(u, X, t), a forcing term) 
i=l 

(l.la) 

u(x, 0) = IQ)(x). (Lib) 

Here u = (ui, . . . . u,)=, x = (x’, x2, . . . . xd), and any real combination of the Jacobian 
matrices Cf=, ti(af,/au) h as m real eigenvalues and a complete set of eigenvectors. 

On a computational grid xi = j. Ax, t, = n At, we use ~7 to denote the computed 
approximation to the exact solution u(xj, t,) of (1.1). 
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We also use the abstract form 

u, = Lf(u) (1.2) 

in place of (l.la). Here P’ is a spatjal operator. 
As is well known, the solution to (1.1) may develop discontinuities (shocks, 

contact discontinuities, etc.) even if the initial condition uO(x) in (l.lb) is a smooth 
function. Traditional finite difference methods, even if linearly stable, often give 
poor results in the presence of shocks and other discontinuities. Recently there has 
been a lot of activity geared towards constructing efficient finite difference 
approximations to ( 1.1). These include TVD (total-variation-diminishing), TVB 
(total-variation-bounded), and EN0 (essentially non-oscillatory) methods. See, e.g., 
[2-6,9, 10, 12-151, and the references listed therein. Many of the ideas can be 
traced back to Van Leer’s work in [16, 171. 

Usually, rigorous analysis (e.g., total-variation stability, convergence) is only 
done for the scalar, one-dimensional nonlinear case (i.e., d= s = 1 in (1.1)). Some 
partial theory (e.g., convergence for first-order monotone schemes, and maximum 
norm stability for higher order TVD schemes) exists for scalar multi-dimensional 
problems (d > 1 in (l.l)), but a full convergence theory for multi-dimensional non- 
linear systems appears to be extremely difficult. However, numerical experiments 
for multi-dimensional problems and/or for systems of equations, using direct 
generalizations of TVD, TVB, and EN0 schemes give very good results. Again, see, 
e.g., [2,4, 6, 10, 111. We now shall confine our discussion at first to this one space 
dimension, scalar case. Systems and multi-dimensional problems are discussed at 
the end of Section 3. 

We shall always use conservative schemes of the form 

u?f ’ = 24; -A@+ ,,* -fj- ,,J, I 2 = At/Ax (1.3) 

with a consistent numerical flux 

A+ I,2 =A+,, ..., u,+J; P(k...,., =f(u) (1.4) 

in order to guarantee that any convergent bounded a.e. subsequence has as its limit 
a weak solution of (1.1) (Lax-Wendroff theorem [8]), i.e., we construct so-called 
“shock capturing methods.” 

The total variation of a discrete scalar solution is usually defined by 

We say the scheme is TVD if 

(1.5) 

TV(u” + ‘) < TV(u”) (1.6) 



EN0 SHOCK-CAPTURING SCHEMES 441 

and TVB in Odt6Tif 

TV( u”) < B (1.7) 

for scme fixed B depending only on TV(u’), and for all n and At such that 
O<nAtdT. 

A nice theoretical advantage of all TVD or TVB schemes is that they have con- 
vergent subsequences as Ax -+ 0, and, if a further “entropy condition” is satisfied, 
then they are convergent. See, e.g., [3]. 

The formal “order of acuracy” in this paper is in the sense of local truncation 
errors; i.e., if local truncation error is O(Ax’+‘) in smooth regions, we say the 
scheme is (formally) rth order accurate. See, e.g., [Z]. 

There are many TVD schemes constructed in the literature (e.g., 
[2, 3,9, 10, 151). In [lo], TVD schemes of very high spatial order (up to 15th 
order) were constructed. These schemes can be used for steady state calculations 
(e.g., implemented with the TVD Runge-Kutta type time discretizations with large 
CFL numbers in [ 141) or for time dependent problems, equipped with a multi-level 
TVD high order time discretization in [ 143 or with a Runge-Kutta type TVD high 
order time discretization in Section 2 of this paper. These are perhaps the highest 
order TVD schemes existing at present. However the definition of total variation 
(1.5) implies that these methods must degenerate to first order accuracy at extrema. 
A TVB modification of such schemes which recovers global high order accuracy 
even at critical points is obtained in [13]. 

The above mentioned TVD and TVB schemes use a fixed, wide stencil (for the 
15th-order scheme, the stencil is 17 points wide), thus restricting the advantage of 
going to a higher order through smearing of discontinuities and resulting 
degradation of the accuracy. Numerically we observed that third-order schemes 
work quite well [13], but we lost accuracy in a fairly large region near discon- 
tinuities by using a fifth-order method. Recently Harten, Osher, Engquist, and 
Chakravarthy constructed EN0 schemes which are of globally high order accuracy 
in smooth regions and which use adaptive stencils, thus obtaining information from 
regions of smoothness if discontinuities are present. These methods achieve high 
order accuracy right up to discontinuities. Analysis and numerical experiments are 
found in [S, 6,4]. At present, a convergence theory (e.g., TV boundedness) for 
EN0 scheme is still unavailable. 

There are two natural directions in which to simplify the EN0 or TVD, TVB 
schemes, especially for multi-dimensional problems or problems with forcing terms: 

(1) Time discretization. Usually, semi-discrete (method of lines) versions of 
EN0 or TVD, TVB schemes are much simpler than the fully discrete ones. There 
are then mainly two ways to discretize in time. One is of Lax-Wendroff type, i.e., by 
using u, = -f,, u,, = (f%),, . . . . uj’+’ = ~7 + At(u,); + (At2/2)(u,,),” + ..., and then by 
discretizing the spatial derivatives. Many second-order TVD schemes (e.g., Harten’s 
in [2]), and the EN0 schemes in [S, 6,4], used this type of time discretization. 
The main disadvantages to the procedure is that it is complicated to program, 

581:77/2-, 1 
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especially for multi-dimensional problems and/or for problems with forcing terms. 
One can see this by writing out a third-order approximation to the equation 
U, +fr(u),~ +f*(~)~z = g(u, x1, x2, t). Moreover, it is not easy to prove that this 
results in a TVD or TVB method, even if the original method-of-lines ODE and its 
Euler forward version are both TVD or TVB. The numerical results have proven 
satisfactory, but, speaking theoretically, only second order in time TVD or TVB 
schemes exist of this type. Another way to discretize in time is to use a multi-level 
or Runge-Kutta type ODE solver. This is much simpler to program than the Lax- 
Wendroff type of discretization for multi-dimensional problems and/or for problems 
with forcing terms, so it is widely used for numerically implementing a method of 
lines approximation. However, usually only linear stability analysis is available in 
the literature, which is certainly not enough for our purpose since linear stability 
does not imply convergence if shocks or other discontinuities are present. This is 

‘particularly true for EN0 schemes which use moving stencils. Linear stability 
analysis is based on the fact that the stancil is fixed and the error accumulates in a 
predictable pattern, hence it does not apply to EN0 schemes at all. For these 
reasons we consider TVD time discretizations. In [14], a class of multi-level TVD 
time discretizations were constructed and analyzed, (numerical results can be found 
in [ 131). However, for easy starting and for storage considerations, one step 
Runge-Kutta type schemes are preferable to multi-level methods. In Section II 
of this paper we present a class of high order TVD Runge-Kutta type time 
discretizations. 

(2) Avoiding the use of cell-averages. The EN0 schemes constructed in 
[S, 6,4] are for cell-averages but involve point values as well. Hence a reconstruc- 
tion procedure is needed to recover point values from cell averages to the correct 
order, which can be rather complicated, especially in multi-dimensional problems. 
It is desirable to use the moving-stencil idea directly on fluxes to get EN0 schemes 
without using cell-averages. In Section III of this paper a class of such EN0 
schemes is constructed. 

Some encouraging numerical results obtained by using schemes constructed in 
this paper are included in Section IV. Concluding remarks are in Section V. 

We conclude these introductory remarks by noting that R. Sanders [ 123 has 
recently devised third-order accurate TVD methods which degenerate to second 
order at extrema. He defines the variation of the numerical solution as the variation 
of an appropriately chosen piecewise parabolic interpolant. The numerical results 
are very good. However, this technique has no method of lines analog, so we omit 
it from our our present discussion. 

II. HIGH ORDER RUNGE-KUTTA TYPE TVD TIME DISCRETIZATIONS 

Define 

w  = z-(u) = (I+ dtL)(u), (2.1) 
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where T and L are nonlinear discrete operators, L is a rth order discrete 
approximate to the spatial operator 9 in (1.2), 

L(u) = Y(u) + O(Ax’) (2.2) 

if u is smooth. 
This is the Euler forward version of the method of lines approximation to (1.2) 

i.e., it is first order in time approximation to u(., t + dt). 
Our goal is to get a fully rth order approximation to the differential equation 

(1.2) of the form 

24 n+‘=S(Un), (2.3) 

(The operator S depends on T.) This means that if U(X, t) is an exact smooth 
solution of (1.2), then 

u(x,, tn+‘)-S(un),=O(Ax’+‘). (2.4) 

We also want the time discretization to be TVD, 

TV(S(u)) < TV(T(u)) (2.5) 

under suitable restrictions on dt (or, equivalently, on the CFL number 1). 
We call a time discretization (2.3) rth order TVD if it satisfies (2.4) and (2.5). If 

the spatial operator T in (2.1) is TVD or TVB, 

TV( T(U)) < TV(u) (2.6a) 

or 

TV( T(u)) < TV(u) + M At (2.6b) 

for 0 < M uniformly bounded as At + 0, then the fully discrete high order scheme 
(2.3) is TVD or TVB, owing to (2.5). 

In [ 141, a class of multi-level type high order TVD time discretizations was 
constructed. Numerical experiments in [ 131 were very promising. But there are two 
disadvantages of multi-level type methods: (i) for an mth level method the first 
m - 1 levels have to be calculated by other methods to the same order of accuracy 
(e.g., by using Taylor series expansions); (ii) we have to store all m levels of data, 
creating a rather large storage requirement, stretching up to and beyond the limits 
of present day computers for physical problems arising, e.g., in computational 
aeronautics. At present, Runge-Kutta type methods are more often used for 
discretizing the method-of-lines than are multi-level methods. Since the former 
are one-level methods, they are self-starting and reduce storage requirements 
significantly. In the following we will analyze the nonlinear stability (TVD) of a 
class of such methods. 
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Assume (2.1) is TVD (or TVB) under a suitable CFL restriction 

A<&). (2.7) 

We may also need an approximation -z to the spatial operator - 2 which we 
take to satisfy 

d = T(u) = (I- &Z)(u) (2.8) 

z(u) = P(u) + O(Ax’) (2.9) 

where (2.8) is TVD (or TVB) under the same CFL restriction (2.7). 
As an example, a very simple first order (r = 1) TVD approximation to 

24, = 24, = Pyu) 

is obtained via simple upwind differencing: 

L(u) = 
u(x + Ax) - u(x) 

Ax ’ 

This scheme (2.1) is TVD if 2 = At/Ax 6 lo < 1. 
The approximation l(u) is defined as 

u(x) - u(x - Ax) 
J%4= dx 

and (2.8) is TVD again for d = At/Ax 6 lo 6 1. 
This procedure (2.8), (2.9) easily generalizes to any conventional TVD, TVB, or 

EN0 approximation (2.1) satisfying (2.2). 
The general explicit Runge-Kutta method (we use explicit methods to avoid 

solving nonlinear equations) for (2.3) is 

i-l 
u(‘) = u(w + At c cik L(#‘), i = 1, 2, . . . . m (2.10a) 

k=O 

u@) = g 
3 

U(m)=Un+l (2.10b) 

If the operator L also depends explicitly on t, as is the case when the forcing term 
g in (l.la) depends explicitly on I, or when we have time-dependent boundary con- 
ditions, the general explicit Runge-Kutta method takes a more complicated form 

i- 1 
u(4 = u(O) + Ar 1 c,L(zbk’, 6’) + dk At), (2.1 la) 

k=O 
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where 

k-l 

dk = 1 ckl, 
I=0 

(2.11b) 

For details, see any numerical ODE test, e.g., [ 1, 71 (any such method is usually 
written in a slightly different form, using k,, kZ, . . . . but that form is clearly 
equivalent to (2.10) or (2.11)). 

We shall restrict our attention to (2.10); the generalization to (2.11) is clearly 
straightforward, using (2.11 b). 

In order to get conditions for TVD, we rewrite (2.10) as follows: For c(ik 20, 
XL:; aik = 1, we have 

r-1 i- I 

di’ = ,c, aik u (O’+At 1 CikL(dk’) 

k=O 

i-l k-l i- 1 

= ~j,,d”‘+ c tl#,(U (k’- At c c,,L(u”‘))+ At c c,L(t&k’) 
k=l l=O k=O 

(the last summation Cj:i + i is not performed for k = i - 1). So if we let Bik = 
C;k-C;:;+l c,kui,, (2.10) may be Written in the equivalent form 

i- 1 
d’) = k;. [a&u (k) + bik dtL(~‘~‘)]. (2.12) 

It is well known that we can get (m + 1)th order accurate methods in the form 
(2.10) or (2.11) for m < 3; mth order methods for m =4, $6; or (m- 1)th order 
methods for m = 7, 8 (see, e.g., [ 11). 

For the classical 4th order Runge-Kutta methods, the constants cik in (2.10) are 
all non-negative. However, pik in (2.12) may well be negative. In order to obtain 
TVD we apply a trick used in [ 141, i.e., we replace L in (2.12) by J? in (2.8-(2.9) 
whenever bik is negative. Now (2.12) becomes a convex combination of TVD (or 
TVB) operators under the CFL restriction 

and we easily get 

(2.13) 

PROPOSITION 2.1. Scheme (2.12) is TVD under the CFL restriction (2.13), ifL is 
replaced by E when fiik is negative. 
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Remark 2.1. The previous proposition may be put into a more general 
framework as follows. The TV in (2.5), (2.6a) and (2.6b) may be replaced by G(u), 
any convex mapping into the non-negative real line, where u, S(u), T(u) belong to a 
Banach space of functions Bd”. Also if u is a smooth solution of (1.2), then 
u(x, t”” ‘) - S(ti(x, t”)) = O((dx)‘+ ‘). The statement in the proposition can then be 
replaced by: G(P) < G(u’); moreover, the formal order of accuracy is still r. 

Now our goal is to choose the aik and pik such that (2.12) is of the highest 
possible order and such that the CFL restriction (2.13) is optimal. We would also 
like to minimize the number of negative /Iik’s in order to reduce the computational 
work involving z. 

One easy way to do this is to use a standard Runge-Kutta method and then 
rewrite it in the form (2.12) to get ajk and pik. Unfortunately, most classical Runge- 
Kutta methods lead to small CFL numbers in (2.13) as well as negative pik’s. Hence 
the best way is to consider (2.12) directly. Straightforward but tedious Taylor 
expansions and an analysis of possible parameters (which we omit) lead us to the 
results: 

(i) Second-order case, m = 1. For accuracy 

(2.14) 

where /Ilo, az,are free parameters. 
It can be verified that the “optimal” scheme (considering CFL restriction (2.13) 

and whether 1 appears) is 

u(1) = u(O) + &q&J’) 

@) = $p’+ &p) + gqp’) 

CFL coefficient = 1. 

(2.15) 

Here CFL coefficient means mini,k(aik/l~ikl) (see (2.13)). Notice that z does not 
appear in (2.15). This is equivalent to 

u(l) = u(O) + dtL(u’O’) 

UC*) = u(O) + fd tL( u(O)) + $l tL(u(‘)) 
(2.16) 

which is the classical Heun’s method or modified Euler method [l]. 
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(ii) Third-order case, m = 2. For accuracy 

a32 = 1 - cI3, -Xx() 

P31 = 
4 - @32PmP21- PP3, 

B 10 

447 

(2.17) 

P30= 1-~31B1o-a32P-P31-832 

P2o=p-~zlP1o-P21> 

where clzl, ujo, a3,, file, and P = p20 + a21/110 + &i are free parameters. The 
solution (2.17) is written in convenient inductive form. 

Extensive searching leads to the preferred scheme: 

u(l) = JO) + &q&y 

U(2) = yo) + ;,(I) + fqu”‘) 

U(3) = +p’+ $p) + ;~fJ&p’) 

CFL coefficient = 1. 

(2.18) 

Notice that z does not appear in (2.18). Also in computing u”) we only need 
L(u”- “), so there is no need to store the previous L(@‘), lowering the storage 
requirement significantly. 

(2.18) is equivalent to 

Jl) = u(o’ + dtL(dO’) 

d2’ = u(O) + ~dtL(dO’) + a dtL(u”‘) (2.19) 

d3) = u(O) + @tL(u’O’) + ~dtL(u”‘) + fdtL(u’*‘). 

We have been unable to identify (2.19) with any of the “classical” third-order 
Runge-Kutta methods. On the other hand, the “classical” third-order Runge-Kutta 
methods in [7], when written in equivalent forms (2.12), lead to negative pik and 
small CFL numbers (2.13), and are hence inferior to (2.19). 

(iii) Fourth-order case, m = 3. For accuracy we get a system of 7 equations 
with 16 unknowns, so there are 9 free parameters. Unfortunately this time the 
solution is not easily obtained in a convenient form. In [l] a general solution with 
two parameters is given for the form (2.10). We can certainly rewrite it in the form 
(2.12). Extensive searching seems to indicate that we cannot avoid negative con- 
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stants pik this time. The classical fourth-order Runge-Kutta method can be written 
in the form (2.12) as 

UC’) = JO) + ;~qu’o’) 

u(2), 1 
2u 

(0) - $4tE(u(“‘) + +4(l) + 5 ‘dtL(u”‘) 

*(3) = $p) - g&p)) + $p) -~dtL(u”‘) + ~2.d”’ + dtJ!,(d2’) (2.20) 

u(4) = $J’) + @t+“‘) + $J2) + f&3) + #t&(3’) 

CFL coefficient = 3. 

Notice that we have to compute z(uco)) and ~(~6’)). If we use the more awkward 
definition of ~6~) 

u(3) - p3lp ‘18m~tQJo)) 

c3769p ; - $@tZ(u”‘) + &d2) + dtL(d3’) (2.21) 

then the CFL coefficient can be raised slightly to &j$. 

(iv) Fifth-order case, m = 5. We simply write out the form (2.12) 
corresponding to a fifth-order method given on page 143 of [7]: 

UC’) = u(O) + ~~~~(~‘0’) 

U(2)=au’O’+au”)+$dtL(u”‘) 

u(3) = &p) - $&(u’o’) + $(‘) - L&&p) + &‘2’+ ;&&‘2’) 

U(4) = $p’- &,dt&p’) + $p) - &jt&p’) 

+ Qd2) + $dtL(d2’) + fd3) + $4tL(u’3’) 

u(5) - 2~;wu’o’ + g$!&~~~(U’o’) + $LJ&T&(‘) 

+ ~dtL(u”‘) + +&gjd2) + &ptL(d2’) 

87 (3) +Eilu - ~AtL(d3)) + &d4) + $dtL(d4’) 

@) = $,(“) + Au(‘) - &&(u(‘)) + .&(3) 

+ $4tL(d3’) + $J5) + $&dtL(d5’) 

CFL coefficient = 3. 

Notice that we need to compute ,?(u”‘), &u(l)), z(uc3)). 

III. A SIMPLIFIED VERSION OF EN0 SCHEMES 

(2.22) 

To use the Runge-Kutta type TVD time discretizations in Section II, we must 
have a spatial discrete operator (2.1) to start with. Theoretically one would like to 



EN0 SHOCK-CAPTURING SCHEMES 449 

use a TVD or TVB operator T satisfying (2.6), because then the full scheme (2.3) 
would be TVD or TVB. But as indicated in Section I, the existing high order TVD 
or TVB schemes may smear discontinuities and pollute the solution (i.e., we may 
not get high order accuracy in a fairly large region near discontinuities), due to the 
fixed, wide stencil. The EN0 schemes constructed in [S, 6,4] are very promising 
experimentally and appealing conceptually, but the fact that they use cell-averages 
as well as point values via a reconstruction procedure, and that they were 
implemented using a Lax-Wendroff type time discretization, makes them rather 
complicated to program, especially for multi-dimensional problem and/or for 
problems with forcing terms. The Runge-Kutta type TVD time discretizations in 
Section II equipped with semi-discrete EN0 schemes will simplify them in many 
cases (although there is no rigorous theory concerning TVB of semi-discrete EN0 
schemes or their Euler forward version, analysis in many cases and numerical 
experiments strongly support that the total variation increase at each step is O(dx’) 
for rth order EN0 scheme, see [6]. Hence the full scheme (2.3) in this case should 
also be TVB). In this section we further simplify non-oscillatory methods by 
deriving a version of EN0 schemes using only fluxes, not cell averages. 

We start with a simple first-order monotone Lax-Friedrichs type of scheme. If we 
define 

f+(u) = t(f(u) + au), f-(u) = i(f(u) -au), (3.1) 

where cramax If’(u)1 is a constant, then clearly 

f+‘(U) 2 0, f-‘(u) < 0 (3.2) 

f+(u) +f-(u) =f(u). (3.3) 

The Lax-Friedrichs scheme is simply (1.3) with the numerical flux defined by 

f?l+I/z=f: +f;,. (3.4) 

Taylor expansion reveals the existence of constants u2, u4, . . . . a2mpZ, . . . . such 
that if 

m-1 

&+,,2=fj+1,2+ c a2kAX2k + O(Ax=” + ‘) (3.5) 
k=l ji 112 

then the scheme (1.3) will be 2mth order accurate in space in the sense of (2.2). For 
example, a2 = -&, a4 = A, . . . . 

In light of (3.4) it is natural to require 

J.+ I/2 = 3;+ l/2 + 3; I,2 (3.6) 

and to define the positive flux f,++ 1,2 and the negative flux 3]< 1,2 (in the meaning of 
(3.2)) separately. 
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For accuracy, we require fT+ ,,2 and f,; 1,2 to satisfy (3.5) separately: 
m-1 

f,%~,z =fi'+ 1,~ + c a2k Ax2k 
k=l 

+ O(Ax2” + ‘). (3.7) 
j+ l/2 

We achieve (3.7) by using polynomial interpolants pi”+ 1,2 of f * to the correct 
order, 

pi’+ ,,2(x) = f ‘(u(x)) + O(Ax’“+ ‘) (3.8) 

near x = xj + ,,z, then define 

35 l/2 = P,‘+ */2txj+ l/2) + 11: a2kW)2k ($ pi’+ ,,2)x=x,+,,2- 1 (3.9) 

Clearly if (3.8) is true, then the fluxes I,$+ ,,2 defined by (3.9) will satisfy (3.7). 
It is in constructing the interpolating polynomials pi”+ 1,2(x) that we use the EN0 

moving stencil idea: in order to achieve (3.8), P,~,,~(x) can be polynomials of 
degree 2m interpolating f ‘(u(x)) at any 2m + 1 points near xj+ 1,2. We use the 
EN0 ideas in [S, 6,4] to choose the 2m + 1 points automatically from the 
smoothest possible region, but start with the correct one according to (3.4). 

The algorithm can be written as follows: For constructing p,$+ 1,2(x), 

(1) #zp~ z/p) =j In,” max 7 Q’O’( + x ) = f ‘(u.) J ’ (3.10) 

(2) Inductively, assume we have k$:i,‘), k$&‘), and Q’:-‘)(x), then we 
compute the nth divided differences off +(u(x)): 

a’“’ = f + [u(x,&&“), . . . . u(xk;b&:,-,‘)+ 1)] (3.11a) 

b’“’ = f + [td(xk;,,k I), . . . . u(x,&ll)]. (3.11b) 

We proceed to add a point to the strencil according to the smaller nth divided 
difference: 

(i) If la’“‘l > Ib’“‘l then , 
p) = b’“’ 

k;)” = kd”,, ’ ) - 1, k;;, = k!& I). 

(ii) If la(“)J < lb’“‘\, then 
p) = a’“’ 

k(“jn = kg@; 1 1, kf&=k&“+ 1 

and finally 
k”-ll 

Q(d( + x ) = Q(- “(x) + C(n) + k=Fm,j (x-xk). 
lit:,. 

(3) P,‘+ ,,264 = Q(:‘%). 

(3.12a) 

(3.12b) 

(3.13a) 

(3.13b) 

(3.14) 
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For constructing p; 1,2(x): 

(1) k$)“=k:..J,=j+ 1, Q!?(x) =f-bj+ 1); 

(2) same as (2) above with f’ replaced by f- and Q + replaced by Q _ ; 

(3) P; &) = Q’~“‘(x). (3.15) 

Remark 3.1. (a) For the first order scheme we just get back the Lax-Friedrichs 
flux (3.4); 

(b) The piecewise linear scheme here (i.e., p,‘+ 1,2 are linear) is similar to the 
usual minmod second-order TVD scheme [9], except that the minmod function 
function is replaced by choosing the value closer to zero (we omit the details of the 
derivation here); this is still a TVD method. 

(c) For the linear equation u,+ au,=0 (the scheme is still nonlinear!), the 
schemes here are equivalent to the EN0 schemes in [6] using the primitive 
function reconstruction. We again omit the details of derivation here. Since the 
EN0 schemes in [6] worked so well numerically and our simplified schems here 
are equivalent to those in [6] for linear equations, we expect ours to work as well. 
For preliminary numerical results see Section IV. 

As mentioned before there is at present no rigorous theory about TVB of this 
type of EN0 schemes. Here we make two observations for our schemes along these 
lines: 

(1) For smooth solutions all the divided differences (3.11) should be bounded 
(by the maximum norm of the nth derivative off’, times some constant). So if we 
use 

8”’ = min(Ic’“‘l, MC”‘) sign(c’“‘) (3.16a) 

or 

P) = min( Ic(“)I, MC”’ fl~“-~) sign(c’“‘) (3.16b) 

in the place of c(“) in (3.14) for n z 2, where MC”) are constants which are related to 
the maximum norm of the nth derivative off+ in initial smooth regions, it does not 
affect the accuracy in regions of smoothness. We then get a TVB scheme. We can 
easily see that our flux with (3.16) satisfies 

(3.17a) 

where 

ltj+1/21 dMAx2 (3.17b) 

with the constant M depending on the MC”) and fi:E: is the second-order TVD 
flux mentioned in Remark 3.1 (b) above. Now (3.17) clearly implies TVB of the 
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scheme. Numerically we do not see any essential difference by using or not using 
(3.16), hence we strongly believe that EN0 schemes without (3.16) are also TVB, at 
least for most practical problems. 

(2) The approach in (3.1 t(3.15) is not the only possible one which can be 
used to construct an EN0 scheme based on interpolating fluxes. At an early stage 
of our current work we used another approach: starting from f’ and f - in (3.1), 
then for constructing p,+(x): 

(1) k(‘l =j- 1 k”’ = Ill,” j3 Q(:)(x)=f+(uj) +f+C”Cxj- 112 u(xj)l(x-xj); 
(2) and (3) same:: procedures (2) and (3) above in (3.10). 

Similarly, for constructing p,:(x): 

(1) k$),=j, kgl,=j+ 1, Q(~)(x)=~-(u~)+~-[u(X~),U(X~+~)](X-X~); 

(2) and (3), same as procedures (2) and (3) above in (3.15). 

Then we take p,(x) = p,? (x) + p,: (x), and write our scheme as 

un+l=u/n-At -t&,(x) . 
J 

( ) x = x, 

(3.18) 

Notice that scheme (3.18) is simpler than (3.9k(1.3). The only trouble is that it is 
not in conservation form (1.3). However, if we use (3.16), then it is easily seen that 
(3.18) can be written as 

u” + ’ = u/” - A(f;[,,2 -jl,LFl12) + ,4x2tj, 
J 

(3.19) 

where 1 tj 1 Q M, and ftf,,2 is the first-order Lax-Friedrichs flux (3.). We can call 
such schemes “essentially conservative” because the most important property of a 
conservative scheme-the conclusion of the Lax-Wendroff theorem in [8]-is still 
valid. Since the scheme deviates from a first-order monotone scheme (not only a 
TVD scheme) by M Ax2, we have even a stronger theory than before-we have the 
entropy condition, hence full convergence (not just of a subsequence), and also 
convergence in multi-dimensional scalar problems; i.e., we have every convergence 
property first-order monotone schemes have. Unfortunately numerical experiments 
indicate that in some cases, (3.18) is inferior to the fully conservative (3.9~( 1.3). An 
illustrative example is to compute the Riemann problem for Burgers’ equation 
u, + uu, = 0 with a moving shock (e.g., ulelt = f, uright = - 1) using the fifth-order 
versions of (3.18) and (3.9)-(3.15), (1.3), equipped with a fifth-order multi-level 
TVD time discretization in [14]. The procedure (3.9~(3.15), (1.3) gives good 
results, with or without (3.16); while without (3.16), the non-conservative (3.18) 
gives the wrong shock location. With (3.16) the shock location becomes correct, but 
the mechanism that enforces this causes a rather severe smearing of the shock. For 
these reasons we avandoned the simple and theoretically pleasing version (3.18). 

Finally let us point out that the Lax-Friedrichs building block is only a 
convenient one; we may also use other monotone or E-fluxes (see, e.g., [lo]) as our 
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building blocks. Of course it is not always possible to associate f + and f- as in 
(3.1) with each E-flux such that (3.2), (3.3), (3.4) is valid, but careful inspection 
reveals that we do not need to use the values of f + and f--only their divided 
differences. For each E-flux h,, ,j2 we can define 

dfi"t l/2 =fi+,-hj+w, df,,1/2=h,+1/2-fi' (3.20) 

where df,:+ 1,2 and df,; 1l2 replace the first (undivided) differences f,Q I - fj+ and 
f,; , -f,-. Hence we can just use the divided difference tables of df + and df ~ in 
place of the divided difference tables of f + and f - in constructing p,'+ 1,2 and 
p]; ,,2, and define f,?, fJ: in any consistent way such that f,+ + f,: = f,, e.g., 

fJ' =L., f,- =O. By (3.20) 

df:,,,,+df,,-,,,,=f,+,-f,> (3.21) 

hence if pi'+ ,,2 and p,; 1,2 use the same stencil then ~i',~,~(x) + p,; ,,2(x) is a 
polynomial interpolating f (u(x)), thus acuracy is guaranteed with (3.9)-(3.6). If the 
stencils are different, say p,?+ ,,2 has the same stencil as p,; 1,2 but p,?+ ,,2 does not, 
then it is easy to show that g,“+ I,2 - p,'+ 1,2 is a sum of rth order undivided differen- 
ces of dJ;+, 1,2 (r is the order of the polynomials pT+ ,,2, p,; 1,2) hence as long as these 
are O(Ax’+‘) (valid if the E-flux hj+,,2 is smooth up to order r) we still have the 
correct accuracy. 

The reason one might consider general E-fluxes as building blocks is that the 
Lax-Friedrichs flux is considered to be too dissipative. While the first-order Lax- 
Friedrichs scheme is much inferior to upwind schemes (e.g., to Godunov’s or the 
Engquist-Osher schemes), our numerical experiments show that higher order EN0 
schemes using Lax-Friedrichs building blocks work quite well (although they are 
still slightly inferior to the same order EN0 schemes based on upwind building 
blocks, the difference is much smaller than that in the first-order case). The advan- 
tage of the Lax-Friedrichs flux is that it is C”, hence the EN0 schemes based on it 
have full high order accuracy. On the other hand, most other E-fluxes-Godunov’s 
Engquist-Osher’s, entropy condition satisfying version of Roe’s, etc.-are not 
smooth at sonic points (points at which f'(u) = 0), hence EN0 schemes based on 
them using the methodology of this paper will lose accuracy at sonic points. 
Although we may overcome this by smoothing those E-fluxes at sonic points, in 
most cases the simple Lax-Friedrichs building block should be good enough. 

Problems in multi-dimensions are approximated by applying the procedure 
described in (3.1 t(3.15) or its generalization (3.20), (3.21) to each of the terms 
af,/ax, in (l.la). The Runge-Kutta methods devised in Section 2 are then used, with 
CFL coefficients shrunk by a factor (d)-‘. 

Systems of equations are approximated using now familiar field-by-field decom- 
positions ideas. In (3.1) we replace the scalar constant CI by a constant matrix ~1, 
CI = { c(~}T=, , where the eigenvalues of af +/au are non-negative and of af -/au are 

non-positive. 
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Obviously c1 might be taken to be a sufficiently large positive scalar multiple of 
the identity, but this might also lead to some smearing of discontinuities associated 
with slower waves. Other more practical choices might involve freezing af/au at 
some constant state U, diagonalizing 

g= R(C) i”““‘...i.(ti)) R-1(4 

and letting 

ct = R(u) 
R-l@), 

where each Xi > 1 A,(u)1 throughout the region. To be safe, the margin of difference 
between each Xi and the maximum value of IA,(u)/ has to be sulliciently large. 

In any case, the corresponding p,++ ,,* (x) are obtained with the help of the left and 
right eigenvectors of (af/du)(u,+ ,,*), which we denote by Z,!; i,* and r,!y ,,2, i= 1, . . . . s. 
We interpolate I,!? ,,Z. f ‘(u) obtaining $2 ,,Z. p,++,,*(x) exactly as in (3.10~(3.15). 
We then define 

p,*+,,*(x)= i (I!” J+I~Z’PJ$~,Z)~~!‘!,/~. 

i= 1 

The fluxes fF+ 1,2 are defined through (3.9). 
Generalizations of the type described in (3.20), (3.21) using approximate 

Riemann solvers for hi+ I,2, appropriately smoothed at sonic points, may also be 
obtained. 

Work is currently under way with various colleagues applying these methods to 
Euler’s equations of compressible gas dynamics in multi-space dimensions. 

IV. PRELIMINARY NUMERICAL RESULTS 

EXAMPLE 1. The EN0 schemes (3.1 t(3.15) in Section III combined with the 
Runge-Kutta type TVD time discretizations (2.18), (2.20) in Section II are used to 
solve the nonlinear Burgers equation with periodic initial conditions: 

u, + (d/2), = 0, -l<x<l 

24(x, 0) = 4 + $ sin 71x -l<x<l. 
(4.1) 

The exact solution is smooth up to t = 2/x, then it develops a moving shock 
which interacts with the rarefaction waves. We get the exact solution by using a 
Newton iteration. For details, see [6]. 
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Since there is a sonic point, we use the smooth LF (Lax-Friedrichs) building 
block in our EN0 schemes. Both 3-3-LF-EN0 (third order in time and space EN0 
schemes with Lax-Friedrichs building blocks) and 4-4-LF-EN0 are used. 

We use a CFL number of 0.8 for 3-3-LF-EN0 and 0.6 for 4-4-LF-ENO. (Here 
we use “CFL number” to mean (At/Ax) max If’(u)l.) 

The errors of the numerical solutions at t = 0.3 are listed in Table I. Since the 
exact solution is still smooth, we get the full order of accuracy in both L, and L, 
norms. 

At t = 2/q the shock begins to form. We use Ax = $ and print out the errors at 
10 points near the shock: 

3-3-LF-ENO: -8.7 x 10-4, -2.6 x 10P3, -7.1 x 10P3, - 1.3 x 10P2, - 1.2 x lo-‘, * 

8.2 x lo-*, 8.0 x 10-3, 1.1 x 10-3, 2.6 x 10-4, 1.9 x 10-4, 

4-4-LF-ENO: - 1.5 x 10-4, -3.2 x 10-4, - 1.6 x 10-3, - 1.5 x 10-2, - 1.2 x lo-‘, * 

7.8 x 10P2, 7.9 x 10-3, 9.2 x 10-4, 1.8 x 10-4, 9.5 x lo-‘, , 

where the * is the position of the shock. We see that there is a very good shock 
transition. (No oscillations are observed.) Figures l-4 show the shock transitions. 

In smooth regions the numerical solutions are very accurate. We compute the L, 
and L, norms in the region a distance of 0.1 from the shock (i.e., Ix- shock 
location1 2 0.1) and list them in Table II. From the table we can see that the errors 
are of the same magnitude as in the smooth case when t = 0.3. 

At t = 1.1, the reaction between the shock and the rarefaction waves is over. The 
solution becomes monotone between the shocks. We again print out the errors at 
10 points near the shock for Ax = &: 

3-3-LF-ENO: - 1.0 x 10-4, 4.6 x 10P4, 4.2 x 10P4, -3.3 x 10-2, -8.3 x 10-3, * 

3.9 x’~O-~, 1.7 x 10P3, - 1.6 x 10P4, -2.5 x lo-‘, -7.0 x 10P6. 

4-4-LF-ENO: 1.1 x lo-‘, 6.6 x 10-4, - 1.6 x 10-3, -5.7 x 10-2, - 1.3 x 10-3, * 

5.7 x 10P2, 2.7 x 10P3, -2.4 x 10P4, -5.8 x 10P5, - 1.2 x 10P6. 

TABLE I 

Example 1 

L, L, 

3-3-EN0 r 4-4-EN0 r 3-3-EN0 r 4-4-EN0 I 

43 2.6 x 10-j 2.1 x 10-3 7.2 x 1O-4 5.3 x 10-d 
rb 2.3 x 1O-4 3.50 1.1 X 10-d 4.25 5.7 x 10-j 3.66 2.5 x 10-S 4.41 
a, 3.1 x 10-S 2.89 5.4x 10-5 4.35 6.5 x 1O-6 3.13 9.2 x lo-’ 4.76 

Note. t = 0.3; E: type of error; r: numerical order. 
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FIG. 1. 3-3-LF-ENO, dx = &, t =2/x. 
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FIG. 2. 3-3-LF-ENO, dx = &, I = 2/n. 
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TABLE II 

Example 1 

LC Ll 

I = 2/n t= 1.1 1 = 2/n t= 1.1 

3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 
8.7 x 1o-4 1.5 x 1o-4 1.6x 1O-4 1.6x lo-’ 3.5 x lo-’ 8.6 x 10m6 6.7 x 1O-6 1.4 x 1O-6 

Note. Errors in smooth region Ix - shock1 & 0.1; AX = &. 

Figures 5-8 show the shock transitions. The errors where the solution is smooth are 
again listed in Table II. 

We can see the excellent behavior of EN0 schemes in this example. 

EXAMPLE 2. A two-dimensional version of Example 1, 

u~+(;),+(~),=o -2<x, y<2, 

(4.2) 
11. x+Y u(x, y,O)=-+-sm7r - 
4 2 ( ) 2 

-26% yG2, 

is tested using the same schemes as in Example 1 in a dimension-by-dimension 
fashion (i.e., T(U) = (I+ AtL,+ AtL,)(u) in (2.1), together with the R-K time 
discretization: (2.18 t( 2.20)). The exact solution is one-dimensional depending only 
on < =x + y; however, our grid points are rectangular in (x, y) coordinates, and 
thus this example is a truly 2-dimensional test problem. 

The CFL number is always taken to be half of the one-dimensional analog, i.e., 
0.4 for the 3-3-LF-EN0 and 0.3 for the 4-4-LF-ENO. 

As in Example 1, we collect the L, and L, errors at t = 0.3 (smooth solution) in 
Table III and the L, and L, errors in regions at a distance of 0.1 from the shock at 
times t = 2/7c and 1= 1.1 in Table IV. We also print out 10 points near the shock 
when x=0, t=2/~) and t= 1.1 for Ax=Ay=&. 

Let t = 2/n, x = 0: 

3-3-LF-ENO: -9.7 x 10-4, -2.3 x 10-3, -7.6 x 10-3, -4.5 x 10-3, - 1.2 x lo-‘, * 

8.2 x 10p2, 7.9 x 10-3, 1.1 x 10-3, 2.6 x 10p4, 1.9 x 1O-4 

4-4-LF-ENO: - 1.5 x 10-4, -3.2 x 10-4, - 1.6 x 10-3, - 1.5 x 10-2, - 1.2 x lo-‘, * 

7.8 x lo-*, 7.9 x 10-3, 9.2 x 10-4, 1.8 x 10-4, 9.5 x 10-5. 
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FIG. 7. 4-4-LF-ENO, dx = &, r - 1.1. 

FIG. 8. 4-4-LF-ENO, Ax = &, t = 1.1. 
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TABLE III 

Example 2 

LC L, 

3-3-EN0 r 4-4-EN0 r 3-3-EN0 r 4-4-EN0 r 
\ 

4 2.7 x 10m3 2.1 x 10-j 1.4 x 1o-3 2.7 x lo-“ 
Tb 2.3 x 1O-4 3.55 1.1 x 1o-4 4.21 1.1 x 1om4 3.67 1.3 x 10-S 4.40 
20 3.2 x lo-’ 2.85 5.6 x 10m6 4.36 1.3 x 1o-5 3.08 4.5 x lo-’ 4.80 

Note. I = 0.3; E: type of error; r: numerical order. 

Let t= 1.1, x=0: 

3-3-LF-ENO: - 1.0 x 10P4, 4.6 x 10P4, 4.2 x 10-4, -3.3 x lo-*, -8.3 x 10P3, * 
3.9 x lo-*, 1.7 x 10-3, - 1.6 x 10-4, -2.5 x 10-5, -7.0 x lop6 

4-4-LF-ENO: 1.1 x 10P5, 6.6 x 10-4, -1.6 x 10-3, -5.7 x lo-*, - 1.3 x 10-3, * 
5.7 x 10P2, 2.7 x 10-3, -2.4 x 10-4, -5.8 x 10P5, - 1.2 x 10-6. 

The shock transition graphs are very similar to Figs. 1-8, hence we omit them. 
We observe essentially the same results as in the l-dim Example 1. This indicates 

that our EN0 schemes work well in multi-dimensional problems. 

EXAMPLE 3. We use the same schemes as in Example 2 above to solve a linear 
problem 

24, + u, + uy = 0, -ldx,y<l, 

4% y, O)= 
{ 
; 

if (x, y)ES 

3 if (x, Y) # S, 

(4.3) 

where S= {(x, y): Ix- yj < l/a, Ix + yl < l/a} is a unit square centered at the 
origin and rotated by an angle of 7r/4 (see [4]). We use Ax = &, and run the scheme 

TABLE IV 

Example 2 

L, L, 

t=2/lr t = 1.1 f = 2/n r= 1.1 

3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 3-3-EN0 4-4-EN0 
9.9 x 1o-4 1.5 x 10-d 1.6x 1O-4 1.7 x lo-’ 7.9 x lo-’ 4.8 x 1O-6 1.5 x 10-5 7.7 x 10-7 

Note. Errors in smooth region 1(x, y) -shock/ Z 0.1; dx = dy = & 
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up to t = 16 (8 periods in time), in order to study the stability and the amount of 
smearing of contact discontinuities of these methods. 

The numerical solutions for y = 0 at t = 2 (after 1 period in time) and at t = 16 
(after 8 periods in time) are displayed in Figs. 9-12. 

Observations. (1) the two-dimensional schemes are stable under CFL numbers, 
one-half of those used for one dimension; (further experiments using one-dimen- 
sional CFL numbers led to instability-overflow), 

(2) The 4th-order scheme resolves the discontinuities better than the 3rd- 
order method. 

(3) Overshoots and undershoots, if any, are negligible. 

(4) Unlike shocks, contact discontinuities are often quite smeared. Artificial 
compression will improve the resolution. 

EXAMPLE 4. We did not prove for these EN0 methods that limit solutions 
satisfy the entropy condition. However, numerical experiments in [6], including 
some tests using nonconvex fluxes, indicated the convergence of EN0 schemes to 
the correct entropy solution. We test our schemes 3-3-LF-EN0 and 4-4-LF-EN0 
for Riemann problems for two such fluxes. One is 

f(u)=+*- l)(u2-4) 

with ur = 2, uR = - 2 (the exact solution is a shock followed by a rarefaction wave 
followed by another shock) and with uL = - 3, uR = 3 (a stationary shock at x = 0). 
See [6] for details. Our schemes converge to the correct solutions in both cases 
with good resolution. The results are displayed in Figs. 13-20. 

Another nonconvex flux we test is the well known Buckley-Leverett example: 

f(u)= 4u2 
4u2+(l-u)* 

with initial data u = 1 in [ - 4, 01, and u = 0 elsewhere. 
The exact solution is a shock-rarefaction-contact discontinuity mixture. Our 

schemes resolve the correct solution well. However, the 3-3-LF-EN0 (using the 
Lax-Friedrichs building block) smears more than the 3-3-EO-EN0 (using the 
Engquist-Osher building block) (Figs. 21-24). Although in this example f’(u) > 0 
so there was no need to smooth the flux, be observed improvement using the 
upwind building block indicates that sometimes it is worthwhile spending the effort 
to smooth the EO or other upwind flux rather than to use the simple LF building 
block. 

In the figures, the solid lines are for exact solutions, and the circles are for 
numerical solutions. Figures l-8 are for Burgers’ equation (4.1); Figs. 9-12 are for 
the linear two-dimensional equation with discontinuous initial data (4.3), with 
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FIG. 9. 3-3-LF-ENO, y = 0, t = 2. 
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FIG. 11. 3-3-LF-ENO, y = 0, f = 16. 
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FIG. 13. 3-3-LF-ENO, Ax = & 

FIG. 14. 3-3-LF-ENO, Ax = &. 
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FIG. 16. 4-4-LF-ENO, Ax = &. 
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FIG. 17. 3-3-LF-ENO, Ax = & 

FIG. 18. 3-3-LF-ENO, Ax = &. 
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FIG. 20. 4-4-LF-ENO, Ax = &. 
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FIG. 21. 3-3-LF-ENO, Ax = &. 
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FIG. 22. 3-3-LF-ENO, Ax = &. 
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FIG. 24. 3-3-EO-ENO, Ax = &. 
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Ax = &j; Figs. 13-20 are for Riemann problems for the nonconvex flux (4.4). 
Figures 13-16 correspond to Q, = , 2 U,ight = -2; Figs. 17-20 correspond to 
u ,en = - 3, qight = 3; Figs. 21-24 are for Riemann problems for the nonconvex flux 
(4.5). 

Concluding Remarks. EN0 schemes using cell-averages and Lax-Wendroff type 
time discretizations were constructed in [S, 6,4]. In this paper we have simplified 
the EN0 schemes by using the moving stencil ideas directly on fluxes rather than 
on cell averages and by constructing a class of TVD high order Runge-Kutta type 
time discretizations which is also applicable to other methods of line schemes, e.g., 
TVD, TVB schemes. We can use different first-order E-fluxes as building blocks. 
Some (e.g., Lax-Friedrichs) are simple and smooth, others (e.g., various upwind 
fluxes) are more complicated, not so smooth at sonic points, but usually less 
dissipative at non-sonic points. We have given four explicit TVD Runge-Kutta 
formulas (second order to fifth order) and used two of them (third and fourth 
order) in numerical experiments. The generalization to systems has been discussed 
briefly and will be explored further in future work. Numerical results indicate good 
shock transitions without any noticable oscillations and high accuracy in smooth 
regions. Contact discontinuities are more smeared than shocks, which will be 
remedied by some kind of artificial compression. The convergence to the correct 
entropy solution for both convex and nonconvex fluxes has been verified by 
numerical experiments. 
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